On a Conjecture by Kalai

نویسندگان

  • Giulio Caviglia
  • Alexandru Constantinescu
  • Matteo Varbaro
  • Jürgen Eckhoff
چکیده

We show that monomial ideals generated in degree two satisfy a conjecture by Eisenbud, Green and Harris. In particular we give a partial answer to a conjecture of Kalai by proving that h-vectors of flag Cohen-Macaulay simplicial complexes are h-vectors of Cohen-Macaulay balanced simplicial complexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on the Entropy/Influence conjecture

The Entropy/Influence conjecture, raised by Friedgut and Kalai (1996) [9], seeks to relate two different measures of concentration of the Fourier coefficients of a Boolean function. Roughly saying, it claims that if the Fourier spectrum is “smeared out”, then the Fourier coefficients are concentrated on “high” levels. In this note we generalize the conjecture to biased product measures on the d...

متن کامل

ON THE h-VECTORS OF COHEN-MACAULAY FLAG COMPLEXES

Starting from an unpublished conjecture of Kalai and from a conjecture of Eisenbud, Green and Harris, we study several problems relating h-vectors of Cohen-Macaulay, flag simplicial complexes and face vectors of simplicial complexes.

متن کامل

A Counterexample to Borsuk's Conjecture

Let f(d) be the smallest number so that every set in Rd of diameter 1 can be partitioned into f(d) sets of diameter smaller than 1. Borsuk's conjecture was that f(d)=d+\ . We prove that f(d)>(\.2)^ for large d.

متن کامل

On Kalai's Conjectures Concerning Centrally Symmetric Polytopes

In 1989 Kalai stated the three conjectures A, B, C of increasing strength concerning face numbers of centrally symmetric convex polytopes. The weakest conjecture,A, became known as the “3-conjecture”. It is well-known that the three conjectures hold in dimensions d ≤ 3. We show that in dimension 4 only conjectures A and B are valid, while conjecture C fails. Furthermore, we show that both conje...

متن کامل

Algebraic Shifting and Basic Constructions on Simplicial Complexes

We try to understand the behavior of algebraic shifting with respect to some basic constructions on simplicial complexes, such as union, coning, and (more generally) join. In particular, for the disjoint union of simplicial complexes we prove ∆(K∪̇L) = ∆(∆(K)∪̇∆(L)) (conjectured by Kalai [2]), and for the join we give an example of simplicial complexes K and L for which ∆(K ∗ L) 6= ∆(∆(K) ∗∆(L)) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013